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ABSI’I{ACT
I’ardlel  algorithms for solutiolt  of titue-deI,emlent  partial dilrercntial  equations (} ’DEs) are cle-
vclopcd.  It is sllowli  that, for a wide class  of SUCII F’IJEs, tile scelllil~gly strictly sequelltird ti!J]c-
step~>ing procedures can be fully parallelized  ill tilne. This results ill algorithlns  tlmt  offer a
mrwsive  degree  of coarse grail) tcll~l,oral parallel  isllt i)) tile colt) l,utatiol],  atld have a highly clecou-
pled structure with  siln[,lc  col]u~~uliicatiol~ slid syllcliro]tizatio!)  rcquiralm]]ts.  SUCII algoritllllts  arc
particularly eflicient  for illl]>le:]]elitatioll  011 enmrgi]]g ]Imssiveiy parallel hfIMD arcllitecturcs.

Kcyu,ords:  Time-parallel algorithms, till)e-depcldcl~t  [’1)1,;s, ti:tje-steppiltg  proceclurcs, Cral\k-
Nicolsol)  metl]od,  ti)lle-  and space.lklrallel  co)))l,tltat ioli, h41MI) arcl]itectures.

1. Intrducticm

‘1’hc  solut ion of  tir]-le-(le})e!](l(’]lt  I’DFk is at tile Ile:irt of !tlany sc.iclltific and
engineering applications. 2’I)c corresponding dcvclo])l[mnt  of fast and accurate al-
gorith~ns has ken extensively studid in the literature. l’lle advent  of rnassiveiy
parallel architectures ofl’ers a ncw ol)portunitjy  for faster solution of evcr~nc)rc colJl-
plex prohlcms.  However ,  in  ordrr  to fully cxl)lc,it tllc cotnputing  power of tllcse
llcw architectures, existing :ilgorithf]ls tnust be reexall]il]ed,  with e[[il)t]mis on Llieir
dlic.iemc.y  for parallel itl)l)ll![l)el)t;ttiot]. hhcntualty,  nt’w algoritl)lns  [nay have to be
clcwelopd  that, from the onset,  take  a g,rrater  a d v a n t a g e  of the avai]al)le mwsive
parallcli.sni.

[n this paper, we present a novel teclll)iquc for solution oftil[~~-(lc])el)clel)t  I’l)Fk
whit.li is particularly eflicirnt  for illll)lc)]]c])t:~lio]]  CJI]  ctlmrgillg ]]):issively  ])arallel
MIMD architmturcs.  Ry del)arti~~g  frc)[n cc,[lvctltiotlal  al)proac~les, our p r o p o s e d
tcch])iquc  a]]ows t])t? solution  of SIICII I’l)ls 10 h? fll]]y parallelizcd  in ti[nc, rt?su]ting
i n  :il.gorillllns wliich ofler a  Tnassivc degrrc  of cc]arse  grain trlllporal  parallel  is[[l



wit,l] a  rninitnuln  o f  corllr[l~lllic.:ltioll  aIld syncllrollizaticjn  re{luirefnc-nt. W C have

already applied this technique to the solutiotl  of a sil]lple  lnodt’1  prol)lcnn,  i.e., the
heat equation [1]. l’he  subsequent prac.tic.rd  il]ll~letllclltatio[] of our tilnc-paralld
algorithfn  on a rnrmivcly  parallt:] M IM 1) arcllitccture, tllc Intel’s Tout.hstonc Delta,
ha s  sltown that a sigllific.ant spmdup c:in he acflicvd even hy usi]ig  a  very large
nurnhcr  of l)rocessors,  e.g., on the order  c]f hundreds [2].

In the sequel, we prcwmt tllc gmcral concel)t,s ul]dcr]ying our ap})roac.h  to
tilnc-parallc.]  computation, anti discuss its domain  of cflicie!lt applicability. We also
analyze kcy issues in extending our technique to rnorc complex prol>lcms, which
highlights the fra[nework underlying our current rcmarc.t]  efTorts. l’he paper  is or-
ganizd as follows. Tilne-stepping procedures for solution of tit!wdcpcr]dcnt  I’DIk
and current parallel computation approac.l)cw  arc rcviewd ill $2. ‘1’he novel time.-
parallel algorithms arc prcy+mtccl  in ~3, and their efficiency and applicability are
rfisc.ussed  in $4. In fj!j, time-paralld alg,orithl]]s  f o r  t w o  ]nodel problc[[ls  are pre.-
scntd ancl their performance is arlalyzcd. Finally, some concluding rcm]arks  are
made  in ~6.

2 .  Dnckgrollnd

2.1. 7’imr-+Sfcppirlg  f’rwcdums

‘1’he algorith]ns  disc.usd  in this paper  can he apl)lied  to the solution of a wide
class of time-depcnricnt. PI)hk.  However, it] order  to ])rovidc a sitnplc illustration
for our discussion, let us consider a parabolic. equation on a 2[) regular domain fl,
with boundary W, i.e.,

with initial and Dirichlet  boundary conditions given by
(Jo = h(r, y), in fl for 1 = 0, and  (J = g(r, y)l  on W for T z t >0

111 llq. (l), E is a linear elliptic operator ancl j(x, y, t) is a source vector.
‘The clisc.retization of Eq. ( 1 ) in both time  and space, by superilllposing  a

uniform grid of size y = Ax = Ay on Q, and using a standard finite- difTerencc
schclnc,  leads to a fatnily  of ti]nc-st, eppit]g rnt:thods forlnalizd ,a.s

(1+ 2cr/JMc)V(’”) == (1 - Xr(l - -  S) ML-)[J(’’’-’) -t F(’”)  ?ll =- I to M (~)

INZXN2.  ~]cllote tile jc{elltj(,Y ]natrix  and the ]Ilatrix ar is ing f romwhere 1 and Mzt%
tht? discretization of ~, r e spec t ive ly .  ]]ere, @ = 7/27:’, T =- -it is tht) time step
size, M =-. 7’/T,  and N is the grid size. Illrtl]t’rmore,  U(’”)  a n d  F’~’’’Jt3iN2  cfenott’
the approximate solution vector at tirlle stc]) 7rL and the vector resulting frol]l tllc
disc. rctization of J(l, y, 1) al)d g(x, y), resl>ectively.

~’hrec rnetllods  arc usual]y  illvolwd fc)r t i l e  solutic]n  o f  I;q, (  1 ) .  ‘1’hey tire
ct]arrtcterized  in tertlis  of tlt]e para]neter  J) as: lxl)licit [Ilcthod  (~~ = O); lrnp]icit
rncthod  ([~ = 1); and Crank- Nicolson ((;-N)  Incthod  (@ = 1/2). ‘1’IIc  explicit lnetl~od
is c.otlditio]lally stal)lc,  while both tht? ilnplic.it and (.:-N Int?lhcds  are unconditionally
stahlc. Furthm]nore,  the (.:-N rl]ethod is .mcond-order  accu ra t e  i n  ti]ne, while tl]c
implicit method is only first-order accurate.
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IholIi a cotrll)l!t:itiorl:ll  point of view, tile solution of Kq. (2) is both tilnc
(number of time steps, A4) and s~)ace (size of grid, fv) de])etldcl)t. [t) tllc sequel,
the tcrln  space-prrrallcl is usrxl for”algorittlllls  tllrit only cxplclit parallclis[n  in solving
13q. (2) at each time step, wilile the trrrn  Iil)tc-parallrl  rcfrrs to tl]osc algorithnis
t h a t  ex~)loit parallelistnil] tlleco!l~l~lltiltiorl  of:ill vrxtors  U[’”), nl=- I to M .

Rm.cnt directions in developing fast, p:iralle] algc,rithnls  for solution of tirnc-
clq~rmrlcnt I' I) Essccrl-l  tollave elrlcrgecl  frorllt\vo  w'i(lcly  ackllowledgcdo  l~scrvatiotls
(see, for example,  [3,4]) regarding the cflicie~,cy  oftir,,c-stepping  rnctllocls  for parallel
computation:
( i )  “I’l]ccx}~licit  nletllotls,  wl)ilclirnitrd in ttlcirrarlgc of stability,  arehigtllyef-

flc.ient for parallel/vector processing,,  sine.c the computation at each tirncstep
mainly involves arnatrix-vector r]ltrltil~lic.tltioll  (hIVM);

( i i )  l`lleirtll)licitz  irld(.~-Nm  etllo~ls,c  leslJitet lleirs(r})eriorr  ~l~rllericall )rol>crties,are
not diic.icmt  for parallel/vector processirlg,  sirlce the solution of a linear  system
is required  at each time step.

l’hc  first observation hrLs motivatrd the dcwdoplncwt of mwv explicit tlletllods  which,
while preserving the efllc.icwc.y for parallel/vector computation, ofTcr better rlumer-
ical properties [5,6]. Note, however, that tile paralldisll”l irl these methods is rather
firlegrain ancf,evcn  witllinlprovdst  ability, avcrylarge  rllll[ll>cr oftirncsl epsiss till
rcquird.  7’hc second observation has Id to :il>l~roac.lles ellll~llasizirlg an increase in
tllccfllc.ier)c.y ofir~~l~licit rrlcttlo(ls  for}> arallcl  c.on~l~tltatiol  l[4,7].  Alltllcscal~l>roac.llcs
result in space-parallel algorithrrw,  since they attempt to paralldize the computa-
tion at each time step  while theovcwall  corllllutatiorl  relnainsstrictly sequential in
time.

The c.ornputationc)f  time-stepping ])rcweciures  in P;q. (2) isgeneral]y assumed
to be strictly sequential in time. ~’his has Illotivated  the developr[wnt  of new
paracligrns,  mostly in the forln of iterative tec]iniques, to achieve some level of
temporal parallelism [8]-[13]. Ilc}wever, all these appioac]lcs  SCCII}  to have achieved
a rather limited parallclisln  in time. Indeed, Wornl)lc [10] supports the mscssrnent
of[f4],  wherein asimultaneous  solutiorl  for all tirnesteps isaot considered l)ractical.

In the sequel, wc I)resrmt a technique which, for a wide class of problcvns,
allows the time-stepping c.orl)l)utation  to he fully parallolized  in time. Irltcrestingly,
for ttlis  clrm of problerils,  our approach estahlisllm  a rather surl)rising  result: tLc
~-.V7ttcf/lod i.s.sigltiJra!l  fly7)l[)rf  cf)iricnl  f/ta7t  l/Lc c2~)lici[n  l/di)tt?)/ici/711 cf/tod.sfor

f i?ttc -parallel  ro7tlp7tfaiiou.

3 .  ‘1’i]t~{~ I’ardld  Alg,oritlillls

'l'orllotivatt't  llt"iflt`:ic  Jftirll(`-JJ:ir:  illelisrl], rloticetllat  Cq. (2)carl  beinterpretd
in terms of First-order ll]l~ort]ogt~rl~’o(rs  Linear  [kcurretlces (l: Oil, Jt). ‘1’he solution
of such recurrences can be conll~uted  in {)(lJog A4) l~y using, for exarrlp]e,  the
al~OrithrrlS in [15]. ‘I’]li S irl(liCtikS  th:lt t]l C COr IlplltatiOrl iS fll]]y para]le]iZ:lblC  i[l

tirnc,  wherein  the tirlie lowor  Imllnd of O(l,o!l  A4) car] l~c :icllieved.



From an efficiency stand point, however, suet] an approach is not practical,
since it involves the c.o[nputation  of cx}~licit inverse arid powers of Inatric.es  in Eq.
(2). Starting with highly sparse matrices, this would  lead to the generation of
increasingly dense and ultinmtdy full nlatrices. I’Tor 21) and 31) prol]lenls, the
Complexi ty of each step  of such a tirllc-paralle]  algorithln  would  then be of0(fV6)
and 0( fV9), respectively, with the overall c.omplcxity of the algorithm being of
0( NcI,og  M)alld0(N91,0g  A4). 7'll~ls, altllc~(lgll tllecolr-ll)lcxity  oftllecol1l~)~ltatiorl
C.ollld h. rdUCtd  iIl tiIIK?, i t  WOllld be Sigllifi  C. ZIIlt]y il)Crt)fLSCd  ill the S})atid dOIIlaiI1.

As a result, the computational cost of such time-parallel algorithms would be orders
of rnagnitudc  greater than that of the best  serial  algorithm for Illost practical cases.
Nevertheless, this ob.scrwation  clear[y.suggcsis  that, insofaras the data dependency
in ihc computation is conccrmcd, fhc fitttc-sicpping  procedures can, in principle, h

jullyparallclizedin ti?ne.

3.1. Iatroducfion’of 7’enlpoml  Parallclisln  in Col)lputation

hfotivatd by the abovo observation, wc propose a technique which, for a wide
c.1~% of tillw-clependerlt  I’DEs, allows the tilne-stepping  procedures to be cflicicnfly
parallelimcj  in time, leading to highly practical algorittllrls  for lna.ssivc]y para]le.1
computation. l’he  fundamental iclea of our tirne-paralld computation is to introduce
a diagona]ization  process in the time-stel)ping scher]ws.  1’0 descrilm our approach,
let us consider the C-N method  given by I?q. (2). Note that the matrices on the lcft-
ancl right-hand sides of the equation arc simultaneously diagonalizable,  i.e., they
have the same  set of eigcnvectots. [Jet the I?igcwvaluc-Eigmrvec.tor  Ilxornposition
(EED)  of the nonsingulat  matrix &i& be given hy:

Substituting the above dccotnpositirm  into Fq. (2) results ir,

Multiplying both sides by the nonsillgular  ~l)atrix G-1,  we ol)tain

I,ct ~(’”) = @-l[l(’”),  m == O to M, and ~[r”) = 0-1 F(’’i), nt u 1 to M. [t f o l l o w s
that

(1 + NA)fi(’”J  =- (] -. ,yA)~j(’”-  1) -} F(?)i) nt. = 1 tc) A4

t)elining tile diagonal lllatriccs

1)1 =: (1 + nA)-’(l - crA) a n d  I)j = (1+ wA)-l (3)
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which is a Lransfornlation  of Eq. (2) into a diagonal fort[l. In  coatrast to RI.
(2), Ilowrvcr, Ml. (4) is highly dlic.icnt  for }Jarallel  computation. For 21) and :m
prohlcll]s,  the complexity of scquerltial  irll~)lerllclltatiorl  of Rq. (4) is of 0( A4fV2)  and
0( A4fV3),  rcspt!ctiveiy.  With 0(A4)  proccssc)rs, the cor[lputation  can IN pcrfornwd
in 0( fV21Jog  A4) and 0( N31,0g  A4) by ridal~ting the algorithn]s  of [15].

3.2. ,SlructuIr  of lAc 7’il)lc-f’arallrl  A lgorilhltt.s

From our discussion regarding the diagoaalization  j)roc.ess,  a iligh level descrip-
tion of the tirnc-parailcl  algorithms can bc given in tcrllls  of tile following steps:

1. Cotnpute  the eigenpairs  of MC
2, (.;oroput,e tile cliagonai  m a t r i c e s  Dl and  [Jz frotn I<;q. (3)
3. Compute 0(0) and j(’”)

O(N ~ @-l[J(o) (5)

p(w)  -. @-  I },,(!IL)- . ?)1 =-’ 1 tcl A4 (6)

4. Compute ti(’”) hy solviag, in I)arallel thr fWlljR ill Eq. (4).
5, Compute U(’”)

(/(J)i)  =, (-)fj(~ll) ?]1 = ] tO A4 (7)

If Me is syrnrnctric,  then E)- I = @~ w}, e.rc ~’ dellOtes transpose. I’bus, in ~W.

(5)-(6), MVMS rather than linear  syst~nl  sc)lutions are required, For nonsymlnctric
M C , the linear  systmn  solutions can also he avoided hy noting that El-* is the
matrix of the eigtmvcctors  of M:. “1’bus, if in Step 1 the eigwrvectors of M:
arc also computed, then the operations in F;qs, (5)-(6) can be reduced to MVMS.
in a parallel environment. with a suflicie.nt aumber  of processors, this does not
degrade  tl]cc.on~})llt:itiorlal  cfliciel~c.y, sir~ce thee.onlputat ionsforMc ancl M~ can
be pcrforrnecf  in paralle]  (see also \5.2).

l’hc  computations in Steps 1 and 2 are space dependent, and necxl to be per-
fornle.cl once (see hclow). Steps  3 and 5 highl ight  tllc full tctnporal  dcc.ouplirlg.
With 0(A4) processors, the cc,rresponding  cotnl)utations  can he performed with a
c.ornplexity  of 0(1) in time anti of O(k)  irl sl)acc, with no cc~lrillllltlicatiorl  among
processors, where k stands for the cost of an hl Vht. ‘1’he only cornlnllnication  oc-
curs in the parallel solution of t,ht? FOI I,Ji in Eq. (4). As can he seen, our proposccl
time-parallel algorithlns  have a highly decoupled structure. If’or  tnany applications
of interest, A{ is very large (of the order  of hurldrmls clr thousands). “J’hu.s, such
a time-parallel computing approach will lcaci to a IImssive  degree of coarse gr:iin
tc’.rlipord l)ar[Lllt’]iSIIl With Sil I”ll)l(’ COltlIll(l IliC;l~i C1ll and SynChrOl)iZatiOll  rC’[l  UirCIIleI)tS.

Iksidcs Step I, tile most collll}tltatioll-i[  ltt$llsive part of the tilnc-paralkd  algo-
r i thms is  the hlVhf ill Steps  :] and 5. In general, for 21) and 3D problenls,  tile
corresponding cost is of 0(N4)  and 0( N6). ‘1’llis  re])resellls a nlajor iln])rover]lellt
over the direct parallel cc)ll]l)[lt:ttir~t] of Eq. (’2). IIowever,  m will be shc~wn  Iwlc)w,
for a wick class of prohlenls  one can exploit the structure of matrix ML, so that
I)oth the cotnplltation of St{?p 1 and, thr h4VA[s  in Steps 3 arid 5 call I)e perfort(led
with a greater dliciellcy.
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our tilne-parallel computing al)pro;icil can also be directly applied to the ex-
plicit a n d  inlplicit  rnetllods,  givel]  hy Eq. ( 2 ) ,  hy using the sarnc diagonalization
tcxhnique,  ‘1’he  resulting time-parallel algorithms will IIave a similar computational
structure, the only dilrercncc  being in tile definition of the diagon.d nlatric.es  1~1
and D2. For the explicit lnethod,  we would obtain D1 = I - 2(vA and Dz = 1 while
f o r  the i]nplicit  [nethod,  we w o u l d  have [)1 =. [)2 =. (1 + 2wA)-1.

Ilowcver,  in order to satisfy the stability constraints, atld achieve the same Icvel
of acc.urac.y <as the C-N method, both tho ilnplicit  and exl)iicit Ilmthods require a
much larger nunlbcr  of time-steps. ‘1’his ilnplics  that, for a given ac.curac.y and
overall computation time,  the titne-parailel computation of the i~nplicit and explicit
methods would require a sigl]ificantly  larger  nulnher  of processors. 11) other words,
for a given nutnhcr  of processors, the titnc-parrtl]el  cornl)utation  of the C-N method
will result in a signific:int,ly  more eflicient  overall il[~l~letlletltatiot], with a lnuch
better accuracy, than either the itnplic.it or explicit lncthocls.

4. Efficiency mid Applicability of Til]~c-I’aralld Algoritl~ms

~’hc basic idea of time-paralld  computation is rather sitnpk. It is also general
in the scllse that it can directly he a~~plid tc~ other types of titllc-clel~c[lclerlt  PDES,
such as first, order and second order  hyperbolic equations [16]. however, what niakcs
it a highly practical and effic.ifmt approach for rnrssively  parallel cnvironrlicnts  is
the fact, that, for a wicle class of applications, tile cotnputation of eigenpairs  of the
matr ix ML can be perfor]ned  very eflic.iently. FurtherInore,  tile tnultiplic.ation  of
t}le matrix of eigcmvectors  hy a vector  can also be carried out  with a great efllcie.ncy.

Motivated by the simple  strwc.ture and lnassivc  coarse grain paralldiwn underl-
ying our approach, we have attempted to identify those problems for which it can
bc applied most efiic.iently. l’hc  two main factors unclm consideration arc:

(i) Fast and accurate c.ornputation  of the eigellpairs  c,f ML;
(ii) Fast multiplication of the rllatrix  of eigellvectors  hy a vector.

Although our results arc prelir]linary,  rather stirl)risi~l~ly  they indic:itc  tliat a wide
class of prohlctns  arc readily well suited  for such an approac.11, ~’hese  }~rol~lelns can
he characterized as those  for which the structure of matrix JL4c can be exploited to
achieve  a high computational efficiency for the rtbc)ve two factors. In the fc)llowing,
a brief  discussion of these factors is l)rf.sented.

~. 1. Fasl  tf~owpuialion  of L’igcnpaivs  0/ .A41

I)epen(iing  on tile structure of jbfc, which reslllb fret]]  tile tyl)e of elliptic.
o})erator,  the Imundary  cc)nditionsj and tl)e ccjnsi(lered  dol[lain, we can identify
three  main techniqllm  for fmt collll~utation  of its t’igelll)airs. l’he first ,aIld second
tec.hniqllm arc r]]ore s})eciai, in tile sense that they take a greater {i(lvalltjage of the
spcc.ific  structure of ML, while ttle t,}lird t,eclltlit[{lr  i s  ttjore g(.ncra], wl]erein  oltly
the sparsity of MC is exploited.



4.1.1. Analytical exl~ression  of eigenpairs  of ML

For a few simple  elliptic Olwrators  on a regular  domain, the analytical expres-
sion of the eigcnpairs  of M c is known a priori. A typical example  is the I,aplace
operator on 21) and “3[)  regular domains. However,  our analysis indicaks that it is
possible to develop analytical formulae for some cases for which no such expressions
were pre.viotts]y  known. The  tlrst example is the nmtrix  arising from the application
of the (;-N method  to the solution of a first-order hyperl)olic  equation. l’hc  scc.ot]cl
cxan~~~lc is the tnatrix arising from the discretizatiotl  of cotlv(?ctiol~-(lifTllsiol~ type
operators with constant cocflicients. ‘1’he  corresponding derivations are discussed
in [16],

Even though  the class of prolhns for which the analytical expression of eigen-
pairs can hc derived  is rather litnited,  it needs to be further explored since they

are well suitd for titne-parallel  computation. Intcrestillg]y,  however, as we shall
see in the second example of 35, tile avai]ahility  of an[tlytical  exl)ressions  dots not
necessarily imply optimal efllciency for our tilne-paralltd  computation approach.

4.12. A divide  and conquer method

‘The second method  can be considered as a divide and conquer approach) which
t?XplC)itS the SpCCifl C StrllCtllrt? Of  J~c..  It HVfUCf.’S t]lL? COIIll)UtatiOn  of the eig~nl~airs
of ML to the computation of eigenpairs  of a set c)f sirnl)ler matrices, e.g., syrnmctric.
and nonsymnmtric.  trirfiagonal  matrices. l’llis  tl)ctllorf can be applied to a wide class
of linear  operators on regular  domains. (lur analysis [16] indicates that c.lasses of
such operators include the I,ap]ace operator in pojar  and spherical coordinates,
separable elliptic. operators, some C.<ases of nonseparah]e  elliptic. operators, etc...

The advantage of this method is its higlt efllcienc.y,  yielding an optimal c.otnpu-
tational cost for most cases. It also ofrers a high degree of coarse grain parallelism,
since the computation of eigenpairs  of the set of tridiagonal  matrices can be per-
formed in parallel. Furthermore, the lnatrix of the eigenvectors  can he obtained as
a factor of sparse [natrices, W h i  C h  a]!OWS itS f[l~t lIlllltip]i Cati OIl by atl~ Vt’CtOr.  lhiS

method is further illustrated in the second exalll])le treated ill !j5.

4.1.3. (:enera]  sparse [natrix  techniques

l’he thirci nwtho[i  is more genera], :Lnd can he Ihwd for prol)lems for which the
first and the second  )nethods  cannot he ap})lied. l{f~gardless  of the type of o}wr-
ator and boundary condition , .44z. has a IIighly sp:irse structure. ‘1’bus, a genera]
approach for eflicient  computation of its cigenl)airs  would be based on the use of
we]] known techniques’ for Sparse eigell})rol)lerl]s [ ] ‘i]. ~’hr key point, howcwr,  is ~hC
jaci ihai wc rrre noi inlrrc.stcd it) r3iJlictt co?llpulation  of //Ie ~ltritrir  of cigfnvcctors,
brrt rafhcr in i f s  )Il?flfiplicrrtion  wilh  .SO?IIC  uf-cfor. SIwcilically, it is Inore cflicicnt
to obtain tl]e matrix of eigenvectors  in a factored forln, since its l[lllltil~lic:itioll by
a vector  can tllcn I)e perforti  Lcd with a greater  e{liciel)cy  (see l)rlow). ‘1’his is a
clear  departllre from rrlost corlventiona]  slmrse eigcllprol~lorll tec]lniques,  w h e r e i n
the. explicit, corrll)llta~iot)  of tile lrl:itrix of eige[lvt,ctr)rfi  is sougl]t.



~..!?. Fast Tllulliplir-atiun of a ?natril  OJ cigcnvcclors  by a vrctor

in gcmeral, the matrix ofeigenvectors,  (3, is dense, For a 2[) problclli,  the cost of
multiplication of El by a vector  is of 0( A’4). Our emphasis on e[lic.ient techniques for
this MVM is b:wrd on the following facts. (;oml)uting the matrix El in a factored
forln allows, in most cases, a much faster  MVM, e.g., in 0(N3)  or even in
0( N2Log N). For a typical 2D problem with N of the order of hundreds, this
would result  in more than two orders oj wagnitudc  specdup,  regardless of the degree
to which the computation is parallclized  in time. Such a significant improvement
provides a strong rationale for tec.hrliqucs  that conlputc  tho matrix of eigcnvw.tors  in
a factored form and thus, by avoidirlg  its explicit evaluation, also achieve  a greater
t? ff~C.iellCy irl COm\)Uti Hg the Ci~fN)l)air$  of rllZltriX Jbfc.

5. Two 13xamplt?s  of Tinlc?-I’aralld  Algc]ritlllns

lrl order  to better illustrate the concept of time-paral]cl computation, wc briefly
discuss its application to two model problmns.

3.1. 2D llcat equation

As a first example, we consider the solution of a 2D heat  equation or: a square
domain. Note that this model problcrn has also hcen considered in [4,5,9, 10,12],  For
the heat equation, the elliptic operator in Eq. ( 1 ) is tile Laplac.c operator. I’hu.  s,
in terms of the (!-N method, Eq. (2) rcprcscnts a sequence of Poisson equations.
By using Fast f’oisson Solvers [18] each solution of Eq. (2) can he obtained in
0( N2Log N), leading to an overall c.ornplexity  of 0(lt4 N2 Log N) in the framework
of the C;-N formalism.

On a square  domain, the analytic.d  cxj)ressions  of cigcnl)airs  of the Laplac.e
operator for Clifrerent  boundary conditions arc known. For the Diric.hlct.  boundary
condition, the matrix @ is the operator of the 2D Discrete Sine Transforln  (DST)
[1], and is given as @ = Q~~ where Q = Diag{Q,  Q, . . . ,~}E}/~2xN2  and QC!RNXN
is the operator of the 1 D D. ST. Furthermore, [’c%’Nax N IS a permutation matrix
which arises  in application of 2D discrete transforms. Note that, F’T’ == P- 1, since
1’ is a permutation matrix and hence is orthogonal.

l’ht? rllllltil>lic.titioll of tnatrix 0 hy any vector is tanta[nount to performing a
21) [) S’I’, which can he c.omputecl in O(N? Log N). ‘]’bus, in a parallel implemer~-
tation using 0(A4)  processors, the co[nputational corl]plexity of the tinle-l)arallcl
algorithm, (~j”p, is giver] i)y

where a t and a? are constants and tllc lower degree ter[rw  arc ncglec. td. ‘1’hf.?
specdup,  ,j’~p, is then obtaincxl as

S7p = –—
A4N2  [,0~  N

= {)((A41,0<~  N)/(1/og  N  +  Lmy Al)) (8)
alN2Lo~  ~ +- a2N2Log  A4

8



A comparison of our theoretic.al result, given by Eq. (8), and the practical
results  of it~~~~lcr~~ellt:ltio~~  of the time-parallel algorithm on the [ntcl IJclta,  prc.scntcd
in [2], with those  reported  in [4,5,9, 10,12] for this same model problem c.lcarly
indicates the eflicimlcy  of our time-parallel computing approach. The results in [2]
also support the assesstlwnt  regarding tile eflic.ierlc.y of tile tirlw-parallel  algorithms
for inlplcmcntat.ion  on rnrwsivcdy  parallel MIM D architic.turcs.

5.2. Laplam  operator in polar coordinates

As a second example, we consider the solution of problmns  involving the Laplace
operator in polar c.oorclinates.  Note that, for this exarnplc,  the analytic.ai  expression
of eigenpairs  of ML is not known. However, M shown below, these eigerrpairs can
be cflic.iently computed by using the t)ivi(ie-atlcl-~;or~(l~ler  method  of 34.1.2.

The Laplace  operator in polar c.oordinatm  is given hy

V2U

The clornain  Q is considered to
pl. The mesh points in the pq$
circles p == iAp, i = q– 1 to p+

he an annuius  Ixtwcwn  two c irc les  with radi i  pO a n d
plane  are defined by the points of interse.c.tion of the
1, and the straight lines d =: jAd, j = 1 to N, where

Ad = 2z/N. For simplicity, it is assurlmd that p. = (q – l)Ap, pl = (p -t- l)Ap
and K = p - q +- 1. With Dirichlct  boundary conditions, and using the five-point
finite-difference scheme,  &lC is a block tridiagonal matrix given by (see also [19])

M c  = “IYidiag[(l - l/’2i)l, Iii, ( 1  + l/2i)l]cR’iNxKN, i = q  to p

where I is the N x N  identity ma t r ix ,  Bi c ~jif~ - 2/ with /ji = (1/iA~)2,  a n d
B is an N x N sym~nctric  tridiagona]  matrix with a perioc{ic  structure given by
B = ~lirtiag[l, –2, 1] with BIN = BNI = 1. Note that this periodic structure of
B results from the periodicity  in ~. The  following theorcrn  is used in deriving the
EED of M c .

T’hfmrmIl 1. l’hc  r2m of the matrix 11 is given l~y

1) = PDF--’

where F is the matrix of cigcnvectors  and ~) :: [)iag{dj  }, j = 1 to N, is the diagonal
rllatrix  of eigcnvalues,  with dj = –4  sin2[(j  – 1 )rr/N].

Proof. See f o r  exar[lp]e [ 2 0 ,  p.253]. C l

‘1’he  rnatriccs  F and F-* are the direct  and inverse 1 1) I)iscrete  [:ollrier lkansforni
(DF7’) operators. Thus, their lll~lltil~lic[ttiorl l)y any vector can I)c performed irl
O(NI.OiJ N). Frolll the defirlition of IJi, it follc,ws that }]i and {~ sll[ire the sarlle
SCt of eigtmvec.tors. ‘lIke E1’;l) of l~i is  then giver) I)y J;i = FA1 F- 1 w h e r e
~i = Diag{Jij} z i~iI) - 21, j ~ 1 t o  N ,  :t[)(l Aij ~ fji(fj  -2.

g)



whore  .?_ = Diag{ F’, 1’, . . . . 1’} and A is the diagonal Inatrix  of cigcnvalucs  which,
along with the matrix Q,”is defined lJt’10w.

Proof.  lle matr ix  M r .  c a n  be written  as

ML = Tridiag[(l  – l/2i)l, FJi F-l, ( 1  + l/2i)l] = 31 U-1 (lo)

where 72 =  7’rirliag[(l  - l/2i)l, Ail (1 -t 1/2i)lJ.  ~ihe block elements  of  7? are
diagonal. l’bus, it can bc reduced to a I)lock diagonal tnatrix T using

where T = Diag{7j}~X’K~xxN and 1; = llidiag [(1 -- l/2i), Aij, (1 +- l/2i)]~!Rkx K,

j =lto Nandi= ~ to p. NO W, let tile ~h~fl of 7~ l)c given by 7; ~ QjAjQ)~l  .
Defining Q = Diag{Qj}  and A = Diag{Aj},  j = 1 to N, it follows that

The EED of ML, given by Eq. (9), is obtained by substituting, Eqs. (1 1)-(12) into
l?q. (lo). D

The matrix Tj is sign .synl~)lcfric,  since the products of pairs of the corre-
sponding ofr-diagoaal  elements  are all aonzero  and positive, and hence hM real
eigerlva]~res.  Due to this property, a]] eigenl)airs  of ‘7; can be efficiently c.orn~uted

by using, for example, the subroutine RT providecl by EISPA(;K  [21]. Multiplica-
tion of a vector by Q,: 1 corresponds to the solution of a linear system involving
a computational cost of 0(1< 3). However, following our disc. rrssiorl  in $3.2., this
operation can be reduced to an iMVM with a cost of 0(li’2)  by notipg  that Qj: 1
is the matrix of eigenvec.tors  of matrix 7;’. Therefore, if the EED of ~ is also
cornputedl  then the matr ix Q): *1s explicitly obtairled  and its multiplication by a
vector represents a simple MVM. For typical values of K of the order  of hundreds,
this scheme results in two orders  of nlagllilude  irnprcwelnent.  in the colnl)utatiorlal
efllc.iency.

Now, let us consider a parallel ir~ll~lt~lrlcl~tatiorl hy usilig if processors. Assum-
ing &f z 2N,  the Elt[)  of 2N sign syrl]metric  tridiagonal  [Imtrices 7; and 7?’ can bc
perfortnecl in parallel, leading to a cost of ()( K2) for Sk?]) 1. l’he diagonal matrices
DI and D2 can I)e computed iIl 01/{fv)  and the cost of parallel solution of the
FOI 1,1{ in Ilq. (4) is of O(A’ N I,oq M). Note that, the matrix of eig,envec.tors, @, is
obtainml  in a factored form as @ = ?TQ. ‘1’bus, the lnultiplication of @ and (3-]
by a vector in Steps 3 and 5 can be perfor[ned  at a cost of al K2N + a2A’N/.og  N,
where al and (IZ are constants, an(l lower degree terms are neglected. The cost of
such an irlll)lellle[ltatiotl  of tilne-parallel  algc)rithtn,  (;7,p, is then given by

10



where as is a constant. and lower degree terms are neglected.

The fast Poisson solvers of [18] can also I]e rxten{led  to solution of the problem
in polar coordinates. l’his implies th:i~, for tlic (.:-N l[mthod, the cost of the hcst
serial algorithm for each solution of Eq.  (2) is of 0( K N I,og N), leading  to an overall
c.otnplexity  of O(A4 A’ N Log N). The  sperwlup of the tirne-1~arallt’1  algorithm, S7P,

is then given by

,j’T~ =
M KNI.og N ——.——-— == O((MLog N)/f<)

all<~N -t a2KNLog N  +- a31{NLog h4

At first glance, it might have secIned that the time-parallel algorithms are
most eflicicnt  for tliose problems for wtlich the :inalytical  expression of cigcnpairs
of A4L are known, and hence no co[nputation is needed. However,  our analysis
of the perfornlanc.e  of the time-parallel algc, ritllm  for the above ex:irnple, in which
additional computations are required for derivation of cigcnl):iirs, aplmars  to clearly
ihdic.ate the contrary. l’his result sce.ms to k rather gmieral aucl shows that, for
most cases, lhc perjovmarrcc OJ the filnc-parallei  algorithms will not be dcgruded due
to ihe need of c o m p u t i n g  f/tc eigcnpaim, ij fhc Iaiicr is ptvfortncd cficicnily.

6. ~cmclusion

we ]lav(? pk%~]ltd a nod  tfXhni(lUC!  f O r  111&$5’ively  parallel  .$ollltion of tilllf.?-
depcnclent  PDEs. Our discussion on the ef]ic.ient  applicability of this technique
clearly itirlic.ates  that it is relevant to a wide class of PDEs. It was shown t ha t ,
for time-parallel computation, the C;-N method  is significantly more efllcicnt  than
either the e.xplic.it or implicit methods. Therefore, our approach enables the use of
fully implicit methods with superior numerical properties and, at same time, with
optimal efllcicnc.y for paralldl  cornplltation.

By using the first aiici particularly the sec.oIid tec.llllique of \ 4.1. for fast coln-
putation of eigenpairs  of matrix M c, we have shown that our approach can madihj
IM applied to a rather large class of problems of practical interest [16]. However,
the solution of problems involving more c.omplcx elliptic. operators and/or opera-
tors on irregular domains, requires further resetirch work with focus on atialyzing
and designing appropri:ite sparse  eigt’lll~rol>lt~llls techni(lues  in the framework of the
discussion in j4.1 .3.

q’his  research W[L$ perforn]ed  ;it the { ~e]lter for Space hficroe]ectronics  l’ec.hnol-
ogy, Jet Propulsion Labor;itory,  (.;alifor]li:i  Institute of ‘1’ethnology. It was jointly
sporisored by innovative Science and ‘1’ethnology of lice of the Ballistic hlissile De-

fense Org:inizrition, and by the Niition[il Aerotl:iutics  and Space Ad~ninLstration,
Oflice of Advanced (;onc.epts  :incl l’echno]ogy. The supl)ort  and encouragement
of l~r. Paul hlcssina,  Director of the (.; occurrent  S\l))c?rcc]l~~l)~ltil~g  (;onsortiu[n,  is
greatly :ic.knowlmlgml.
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